3 分析范围 氧0.05ppm-5%
氮0.05ppm-3%
氢 0.1ppm-0.25%
4 标准样品重量 标准1.0g
5 分析精度(重现性):
(气标) O: 0.025ppm或0.5%RSD
N: 0.025ppm或0.5%RSD
H: 0.05ppm或2%RSD 氧氮的仪器分析精度,只有力可可以达到0.025ppm.
而其他厂商最高的精度只有0.2ppm,比力可低一个数量级。
6 灵敏度(最小读数) O/N/H : 0.001ppm
7 分析时间 标准调置90秒(可根据具体分析选择时间) 由于不再需要用色谱柱分离N2和H2,分析时间由原来180秒缩短到90秒,适合现场大分析量的应用。目前只有力可公司的TCH600可以满足这个分析时间的要求。
其他厂商单测氢的时间为180秒,而得出氧氮氢三个结果的时间至少30分钟,才可以保证精度。
8 脉冲电极加热炉 1.高精度电流、电压、功率控制功能,可以进行程序升温分析,而且可以进行无极升温。
2.炉子输出功率:7.5KW,能满足有色金属、黑色金属及各类高温合金的检测要求
3.电极炉自动定温保持功能
4.系统漏气检查自动化,可进行炉头漏气分段控制进行检漏
5.五步脱气功能:在分析时可以提前将坩锅中的杂气经5步脱气用于降低空白 1.力可升温程序可以任意设置,而其他厂商最多只能设定10段升温。
2.力可仪器气路漏气检查分为更详细的4段检漏,大大缩短了排查时间,其他厂商最多2路检漏。
9 水循环方式 氧氮氢分析的释放温度很高,大约在3000摄氏度左右,单一的内循环无法保证完全的冷却,对仪器下电极的保护不够。因此力可采用内外冷却循环水结合,确保冷却效果。
六 分析软件
1 操作界面 中文、英文操作界面 力可为出厂标准配置的多语言操作平台(内置包括英文和中文在内的5种语言),而其他厂商为国内翻译,有软件的冲突,容易死机。
2 报表功能 标准配置(仪器软件自带)
3 分析通道 氧氮氢通道无限制,用户可自行编辑较为灵活的分析方法 其他厂商为最多16个通道。
4 分析功能 1. 分析模式:手动和自动分析
2. 分析条件:可设定温度进行升温分析。可以任意设定积分时间及累计积分
3. 校正:一点或多点校正,可对校正系数及校正曲线进行打印删除校正数据功能。
分析结果可转用于校正功能。
校正式补偿功能
4. 分析结果可自动存储、适时显示、实时打印
5. 可实时动态显示试样的燃烧释放曲线
6. 自动存储分析图形
7. 可显示分析气路
8. 在分析气路可实现检漏及机械、信号、输出等自诊断功能
9. 遇异常情况可及时报警
10. 具备氧化物及氮化物分离的专用软件
5 数据处理功能 平均值、标准偏差、相对标准偏差等
可对数据进行非连续性选择
分析数据可及时进行网络传输
分析结果可随时转化成分析报告
6 日志文件功能 记录所有的操作、结果、维护,以便了解仪器运行状况
7 帮助文件功能 1. 含维护、参考、操作手册,提供具体的操作方法、故障产生的原因及排除方法,以便随时查阅
2. 软件配有HELP文件,可随时查看
8 自诊断功能 警告性警报
提示性警报
七 技术服务
1 技术资料 卖方在合同生效后一个月内寄发安装条件说明书(中文)
由卖方负责安装、调试。正常运转验收合格后方能交付使用。
卖方提供中英文操作手册、维修手册、电路图等技术手册一式两份。
2 仪器验收 按标样分析精度要求和中短期精度试验指标进行考核。
3 售后服务 厂家在国内要有维修中心,要有专职的维修工程师,设有备品备件库,在买方提出维修要求后,能在4小时内做出维修响应,1-2个工作日内到达用户现场:供方应负责终身维修。 目前只有力可在国内设有维修中心,力可为厂商直销,在上海设有总代表处,在北京和重庆设有分支机构,为中国用户服务超过了30年。力可的维修工程师均为专职,在国内共有11名。
其他厂商为代理制销售,售后服务实力无法保障。
4 培训 免费提供2-4人国内一周培训。包括仪器基本原理、使用维护要求常见故障现象及排除的培训。在仪器安装调试时,卖方安装工程师对用户现场进行技术培训,着重仪器硬件的检修培训。
5 质量保证期 仪器整机保修12个月,保修期内接到维修邀请应在电话中即刻答复或8小时内派员到场修复。
Oxygen, Nitrogen, and Hydrogen Determination
in Refractory Metals*
Instrument
TCH600
Sampling and Sample Preparation
Sampling and sample preparation of refractory metals such as titanium and zirconium is somewhat different from that of
steel. Unlike steel samples, hydrogen is not as mobile in this group of materials; therefore, storage in liquid nitrogen or dry ice is not required. However, it is important to keep the sample cool when cutting or sectioning. Sample preparation for
oxygen and nitrogen determination has been different from that for hydrogen determination. Typically, titanium and zirconium samples are chemically etched to remove surface contamination when oxygen and nitrogen are determined. However, etching can introduce hydrogen into the sample. ASTM method
E 1409 "Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion
Technique", as updated in 1996, permits either etching or abrading (filing) of the test specimen. ASTM
E 1937 "Determination of Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique" indicates that the test specimen be etched. ASTM E 1447 "Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection Method" permits surface preparation by abrading (if necessary to remove contamination). Differences in sample preparation
present somewhat of a dilemma regarding simultaneous determination of O, N, and H in Titanium. However, abrading samples with a file to remove surface contamination will yield accurate O, N, and H results.
Accessories
776-247 Graphite Crucibles, 501-073 Graphite Powder, 502-344 Nickel Basket, 501-059 Tin Capsule
(powder, chip, granular samples)
Note: LECO 502-344 Nickel Baskets are prepared using a proprietary procedure to ensure low and precise
O, N and H content. These baskets can be used directly from the bottle without additional cleaning. To avoid contamination handle with clean forceps only.
Calibration Samples
Refractory metal reference materials (titanium, zirconium, etc.) from LECO, NIST or other suitable reference materials.
Sample Weight
0.1 to 0.15 g
*Refractory Metals include Ti, Zr, W, Mo, Ta, Nb, Hf, and their alloys.
TCH600
Method Parameters
Analysis Parameters
Outgas Cycles 3
Analysis Delay 20 seconds
Analysis Delay Comparator 1.000
Analysis Type Semi-Auto Analysis1
1In earlier software programs this is the same as Auto Analysis. Auto Analysis is now used for instruments equipped with auto-sample loading capability, refer to the latest version of the operator's instruction manual for additional details.
Element Parameters Oxygen Nitrogen Hydrogen
Minimum Analysis Time |
40 seconds |
60 seconds |
60 seconds |
Significant Digits |
5 |
5 |
6 |
Conversion Factor |
1.00000 |
1.00000 |
1.00000 |
Integration Delay |
5 seconds |
15 seconds |
10 seconds |
Comparator Level |
1.00000 |
1.00000 |
5.00000 |
Stop if below (%) |
0.000000 |
0.000000 |
0.000000 |
Furnace Parameters
Furnace Control Mode Power
Pre-Analyze Purge Time —
Purge Time 10 seconds Outgas Time 15 seconds Outgas Cool Time 5 seconds Outgas Low Power 6000 watts* Outgas High Power 6000 watts* Outgas Ramp Rate —
Analyze Low Power 5200 watts* Analyze High Power 5200 watts* Analyze Ramp Rate —
Sample Prep Time — Sample Prep Power — Temperature Sustain None
*May vary, depending on line voltage. Level can be adjusted to facilitate recovery and/or reduce crucible burn-through.
Procedure—Solid Samples
1. Prepare instrument for operation as outlined in the operator's instruction manual.
2. Determine Blank.
a. Enter 1.0000 g weight into weight stack.
b. Press Loader Switch on front of furnace, after a short delay the loading head slide block will open.
c. Place a 502-344 Nickel Basket into open port at top of loading head.
d. Press Loader Switch again, the loading head slide block will close and the lower electrode will open.
e. Add ~75 to 100 mg of 501-073 Graphite Powder to a 776-247 Graphite Crucible.
f. Place crucible on electrode pedestal.
g. Press Loader Switch, the lower electrode will close and the analysis sequence will start and end automatically.
h. Repeat steps 2a through 2g a minimum of five times.
i. Set the blank following the procedure outlined in the operator's instruction manual.
3. Calibrate/Drift Correct.
a. Weigh ~0.1 to 0.15 g of a calibration sample and enter weight into weight stack.
b. Place sample into a 502-344 Nickel Basket.
c. Press Loader Switch on front of furnace, the loading head slide block will open.
d. Place nickel basket/sample into open port at top of loading head.
e. Press Loader switch again, the loading head slide block will close and the lower electrode will open.
f. Add ~75 to 100 mg of 501-073 Graphite Powder to a 776-247 Graphite Crucible.
g. Place crucible on the electrode pedestal.
h. Press Loader Switch, the lower electrode will close and the analysis sequence will start and end automatically.
i. Repeat steps 3a through 3h a minimum of five times for each calibration sample used.
j. Calibrate or Drift Correct the instrument following the procedure outlined in the operator's instruction manual.
4. Analyze Samples
a. Weigh ~0.1 to 0.15 g sample and enter weight into weight stack. b. Proceed as directed in steps 3b through 3h.
Typical Results—Solid Samples
Sample |
Weight g |
O % |
N % |
H ppm |
LECO |
0.1143 |
0.269 |
0.0174 |
11 |
502-201 |
0.1138 |
0.267 |
0.0161 |
11 |
Titanium Pin |
0.1139 |
0.266 |
0.0174 |
11 |
0.267% O |
0.1142 |
0.266 |
0.0172 |
13 |
0.017%N |
0.1146 |
0.269 |
0.0167 |
12 |
|
0.1126 |
0.269 |
0.0173 |
12 |
|
0.1149 |
0.265 |
0.0170 |
12 |
|
0.1145 |
0.266 |
0.0172 |
12 |
|
0.1140 |
0.267 |
0.0164 |
12 |
|
0.1144 |
0.266 |
0.0171 |
12 |
|
X = |
0.267 |
0.0170 |
12 |
|
s = |
0.0016 |
0.0004 |
0.5 |
LECO |
0.1086 |
0.131 |
0.0028 |
19 |
502-047 |
0.1111 |
0.131 |
0.0028 |
20 |
Zirconium Pin |
0.1103 |
0.131 |
0.0029 |
20 |
0.13% O |
0.1141 |
0.131 |
0.0028 |
20 |
|
0.1110 |
0.130 |
0.0025 |
19 |
|
0.1096 |
0.131 |
0.0029 |
20 |
|
0.1125 |
0.131 |
0.0029 |
20 |
|
0.1052 |
0.131 |
0.0027 |
19 |
|
0.1003 |
0.131 |
0.0027 |
20 |
|
0.1132 |
0.132 |
0.0029 |
20 |
|
X = |
0.131 |
0.0028 |
20 |
|
s = |
0.0004 |
0.0001 |
0.5 |
Procedure—Powder/Chip Samples
1. Prepare instrument for operation as outlined in the operator's instruction manual.
2. Determine Blank.
a. Enter 1.0000 g weight into weight stack.
b. Press Loader Switch on front of furnace, after a short delay the loading head slide block will open.
c. Insert a 501-059 Tin Capsule (leave capsule open) into a 502-344 Nickel Basket and place into open port at top of loading head.
d. Press Loader Switch again, the loading head slide block will close and the furnace lower electrode will open.
e. Add ~75 to 100 mg of 501-073 Graphite Powder to a 776-247 Graphite Crucible.
f. Place crucible on the furnace electrode pedestal.
g. Press Loader Switch, the lower electrode will close and the analysis sequence will start and end automatically.
h. Repeat steps 2a through 2g a minimum of five times.
i. Set blank following the procedure outlined in the operator's instruction manual.
3. Calibrate/Drift Correct.
a. Weigh ~0.1 to 0.15 g refractory metal calibration sample into a 501-059 Tin Capsule and enter weight into weight stack. Note: Calibration samples can be solid; they do not have to be powder
or chip.
b. Press Loader Switch on front of furnace, after a short delay the loading head slide block will open.
c. Insert capsule into 502-344 Nickel Basket and place into open port at top of loading head.
d. Press Loader Switch again, the loading head slide block will close and the furnace lower electrode will open.
e. Add ~75 to 100 mg of 501-073 Graphite Powder to a 776-247 Graphite Crucible.
f. Place crucible on furnace electrode pedestal.
g. Press Loader Switch, the lower electrode will close and the analysis sequence will start and end automatically.
h. Repeat steps 3a through 3g a minimum of five times for each calibration sample used.
i. Calibrate or Drift Correct the instrument following the procedure outlined in the operator's instruction manual.
4. Analyze Samples.
a. Weigh ~0.1 to 0.15 g sample into a 501-059 Tin Capsule and enter weight into weight stack.
b. Proceed as directed in 3b through 3g.
Typical Results—Powder Samples
Sample |
Weight g |
O % |
N % |
H ppm |
Tantalum |
0.1055 |
0.206 |
0.0045 |
38 |
Powder |
0.1076 |
0.207 |
0.0045 |
39 |
|
0.1096 |
0.205 |
0.0040 |
37 |
|
0.1020 |
0.205 |
0.0044 |
38 |
|
0.1052 |
0.206 |
0.0048 |
39 |
|
X = |
0.206 |
0.0045 |
38 |
|
s = |
0.001 |
0.0003 |
1 |